翻訳と辞書 ・ Łozienica ・ Łozina ・ Łozinka ・ Łoziska ・ Łozowe, Podlaskie Voivodeship ・ Łozowo ・ Łozowo-Kolonia ・ Łozy ・ Łozy, Lubusz Voivodeship ・ Łozy, Masovian Voivodeship ・ Łozy, Warmian-Masurian Voivodeship ・ Łońsko ・ Łoś, Masovian Voivodeship ・ Łośnica ・ Łośno ・ Łoś–Tarski preservation theorem ・ Łoźnica, West Pomeranian Voivodeship ・ Łoźnik ・ Łoża ・ Łuba Druga ・ Łubcze ・ Łubia ・ Łubiana ・ Łubiana railway station ・ Łubiane ・ Łubianka, Augustów County ・ Łubianka, Greater Poland Voivodeship ・ Łubianka, Kuyavian-Pomeranian Voivodeship ・ Łubianka, Masovian Voivodeship ・ Łubianka, Pomeranian Voivodeship
|
|
Łoś–Tarski preservation theorem : ウィキペディア英語版 | Łoś–Tarski preservation theorem The Łoś–Tarski theorem is a theorem in model theory, a branch of mathematics, that states that the set of formulas preserved under taking substructures is exactly the set of ''universal'' formulas (Hodges 1997). == Statement ==
Let be a theory in a first-order language and a set of formulas of . (The set of sequence of variables need not be finite.) Then the following are equivalent: # If and are models of , , is a sequence of elements of and , then . ( is preserved in substructures for models of ) # is equivalent modulo to a set of formulas of . A formula is if and only if it is of the form where is quantifier-free. Note that this property fails for finite models.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Łoś–Tarski preservation theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|